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Abstract 

          The present paper provides solutions of Einstein-Maxwell- Cartan fields equations for static conformally 

flat charged fluid sphere. Various physical and geometrical features have been found and discussed. Constants 

appearing in the solution have been calculated using boundary conditions. 
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1 INTRODUCTION: 

In recent years various relativistists have focused their attention towards the study of charged fluid 

sphere with conformal flatness in Einstein – Cartan theory [8-13].  Chang [2] has found some conformal flat 

interior solutions of the Einstein-Maxwell equations for a charged stable static sphere. These solutions satisfy 

physical condition inside the sphere. Singh and Yadav [9] have solved the E-C equations for a charged fluid 

sphere by deriving a general set of differential equations which the function    rr  &  of the metric 

coefficients must satisfy and have obtained the solution by adopting a technique similar to that of Alder [1] 

for an uncharged fluid sphere in general relativity. The relevant differential equation reduces to Euler’s 

equation which may be treated as a generalization of the equation of Wyman [14]. Unlike general relativity 

they have shown that pressure p is discontinuous at the boundary of the fluid sphere. Raychaudhuri [7], Nduka 

[5] have taken the E-C equations in a form so as to preserve the charge conservation principle. With this 

formulation Raychaudhuri has investigated the possibility of bounce in the presence of a magnetic field for 

Bianchi type-I universe with p=0 and p=  . Yadav and Sinha [12] have also found some solutions for static 

charged dust sphere with conformal flatness. Whereas Yadav and Prasad [13] have obtained general solution 

representing conformally flat non- static spherically symmetric perfect fluid distribution in Einstein – Cartan 

theory.     

 In this paper, we have taken the static conformally flat charged perfect fluid sphere with spin. We have 

solved the Einstein-Maxwell-Cartan field equations by a different technique using Hehl’s (1974) approach by 

assuming effective mass density  (=
22 K  ) to be constant. We have also found pressure, gravitational 
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mass density and spin density for the distribution and the physical constants appearing in the solution have 

been obtained by matching the solution with Reissner-Nordstrom metric at the boundary. 

         

2 THE FIELD EQUATIONS AND THEIR SOLUTIONS: 

As has been already pointed out by Hehl [4], the Maxwell field does not couple to torsion. It is easy to 

see that if it did not couple to torsion, one would have to sacrifice the charge conservation principle. If one 

tries to obtain the electromagnetic field from the variational principle with the usual Lagrangian, it is found 

that gauge invariance is last. The variational principle gives 

                      
 JF /
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 where a vertical line indicates co-variant differentiation with the non-symmetric affinity, a semi  colon 

denotes the co-variant derivative with respect to the Christoffel symbols and a comma denotes partial 

derivative. 

Thus it J  is identified as the charge current vector, then in general the charge conservation principle 

is violated. It therefore, seems more appropriate to adopt the prescription that the electromagnetic field tensor 

is to be defined by 
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   and we have usual Maxwell field equations 
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   The Einstein- Cartan- Maxwell field equations may be may be written as [6,7] 
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  (2.2)                     iij jgjFg 2
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2
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 (2.3)                 0; kFij  

where Rij is the Ricci tensor of asymmetric connection and also the energy momentum tensor tij is not 

symmetric, F  is the electromagnetic field tensor and J  is current four vector (we have set C  and the 

gravitational constant also to be equal to unity). 

 We use here the static spherically symmetric metric 
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 (2.4)           2222222 sin  ddrdredteds   

                    where  &  are functions of r only. 

  For the system under study the symmetric energy momentum tensor 
i

jT  splits into two parts viz. 
i

jT  

and 
i

jE  for matter and electromagnetic field respectively as 
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Here p is pressure,  is density of matter and ui is the velocity vector of matter. 

We use co-moving co-ordinates so that 
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The non-vanishing components of j

iT are 
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Thus the Einstein-Cartan-Maxwell field equations are 
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where following Hehl [3, 4] we have defined effective pressure p and effective density  as 

    (2.12)                   22 2.,2 KKpp    

  with 

  (2.13)                    2


 HeK  

Here H is a constant of integration and dashes denote differentiation w.r.t. r 

To solve (2.2), we get 
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where Q(r) represents the total charge contained within the sphere of radius r i.e. 

 (2.15)                       dtrrQ e

24   

where e is the charge density. 

Eliminating p  form (2.9) & (2.10), we get 
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For the spherically symmetric metric (2.4), the non-vanishing components of Weyl tensor are 
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                  C2424 = -e-v - C1212 
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For conformal flatness vanishing of the Weyl tensor provides us 

 (2.17)               0'
2

1

244

1 '
''2'

22



 



rrr

e
 

Multiplying equation (2.17) by e  and then adding the result to (2.16), we get.   

 (2.18)              
22

'
2 11

2 rrr
eE 








    

It is clear from these equations that it is   22 Kpp   and not the p which is continuous across the 

boundary r = r0  of the fluid sphere. The continuity of p across the boundary ensures that of .exp'  Further 

with p =p- 22 2&2 KK    replacing p and    respectively, we are assured that the metric co-efficients   

are continuous across the boundary. Hence we shall apply the usual boundary conditions to the solutions of 

equations (2.9) (2.10) & (2.11). 

The exterior metric is taken as Reissiner –Nordstrom metric given by 
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            when                   bb rQQ     and M is the total mass of the fluid sphere. 

Equation (2.9), (2.10), (2.11), (2.13), (2.14) and (2.18) are six equations in seven unknowns 

)(,,,,, rQKp  and E2. Thus the system is indeterminate. To make the system determinate we require one 

more relation or condition. For this we will specify the effective mass density    or the charge density 

distribution e  or the effective pressure distribution p or spin density K and solve for the remaining equations. 

The solution of (2.18) is 
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  where A is the integration constant and B(r) is 
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Inserting (2.20) into (2.9) we get 
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The E2 can be determined from the equation (2.23) if the   have been predetermined. 

We consider the uniform effective mass density i.e. 

                                  Constant = C 
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Then from (2.23) we get 
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 Integrating equation (2.24), we get the expressions for the electric field and charge as 
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From (2.29) and (2.25) we get 
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Eliminating  p  between equations (2.10) and (2.11) we get 
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Substituting the value of and E2 from equations (2.31) and (2.25) in (2.33) we get 
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Using the transformation 
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  we get the equation (2.34) into the form  
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where    is a constant, equation (2.37) is reduced to the form  
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Finally we get the solution of equation (2.34) as 
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 It is obvious that for real solution 1- 0  or equivalently 01   and L and M are constants of 

integration. 

 Now using equations (2.10), (2.12), (2.26), and (2.39), pressure and density are given by 
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Also spin density K is given by 
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, the final solution of equation (2.34) is found to be 
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Also pressure and density in this case are given by 
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Also spin density K in this case is obtained as 

 (2.47)         K   = 
  coshsinh MLr
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The constants appearing in this solution can be evaluated by matching the solution with Reissner-

Nordstrom metric at the boundary as already discussed in this section. Thus the constants HML &,, are 

given by.  
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where rb, Rb, b and b   are values of   r, R,  and     at the  boundary 
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